
18 CROSSTALK The Journal of Defense Software Engineering February 2005

Software Risk Management
From a System Perspective 

George Holt 
AdaRose Inc. 

Software development can be fraught with frustration. Too often, we treat hardware risks and software risks as separate enti-
ties. Staying focused on the basics of risk management at the system level, from the get-go, is an essential part of minimizing
risks and ensuring the success of even the most challenging and complex development projects. This article stresses the impor-
tance of managing risk from a system perspective by providing concrete examples of how one company applied the fundamen-
tals of risk management to a military tactical system developed under less than ideal conditions.

Developing software can be challeng-
ing and rewarding but seldom easy.

Developing software with a floating hard-
ware baseline can be quite difficult. Add
to this the commensurate development of
test tools, simulators, and emulators by
third parties, and then place schedule and
cost constraints on the entire project, and
you challenge even the best and the
brightest.

Although each project entails unique
demands, challenges, and problems, if we
fail to predict and prevent risks from a
system perspective it can lead to costly
delays, increased stress on team members,
a lesser product – even project failure.

This article stresses the importance of
managing risk from a system perspective.
It provides concrete examples of how
one company, AdaRose Inc., applied the
fundamentals of risk management to a
military tactical system developed under
less than ideal conditions such as those
described above.

The Task at Hand 
AdaRose engineers had prior experience
developing software that resulted in the
first tactical weapon system to run on a
common PC architecture using a com-
mercial operating system. The current
task was to port this software to a new
hardware architecture (still PC-based) that
incorporated three single-board comput-
ers providing navigation, command-and-
control, situational awareness, and real-
time diagnostics.

Along with AdaRose, the Integrated
Product Team (IPT) consisted of a major
defense contractor, a small business hard-
ware manufacturer, the Army end user,
Army research and development special-
ists, and the Army product manager. All
members of the IPT were experienced
professionals with in-depth knowledge of
the weapon system from both a function-
al and operational perspective. The soft-
ware consisted of 230,000 lines of Ada
code with specialized modules and drivers
written in other high order languages.

The Solution 
Although each project has its own
requirements, the fundamentals of effec-
tive risk management at the system level
remain the same. By identifying risks and
developing solutions before and during
the development process, you maximize
the team’s efficiency and the quality of
the finished product.

I would like to start off by referring
the reader to one of my earlier articles,
“Risk Management Fundamentals in
Software Development” published in the
August 2000 issue of CrossTalk [1]. It
describes how to implement an effective
software risk management program. The
fundamentals in that article can be
applied, at the system level, to this mili-
tary tactical system developed under less
than ideal conditions.

Identifying the Risks 
From the get-go, we were informed that
this project would have significant risk

drivers, i.e., (1) it would have cost and
schedule constraints, (2) it would require
software development before the hard-
ware was built, and (3) tools such as lab
simulators and emulators would have to
be developed commensurate with the
tactical software development. What was
initially perceived as a straightforward
port of software to a new hardware envi-
ronment turned out to be a nontrivial
undertaking.

System Level Risks 
The challenge on this project soon
became evident. On the one hand, soft-
ware could not wait for completion of
hardware due to the schedule constraint.
This required us to proceed with software
design and development without access to
a hardware target platform. Additionally,
there was a requirement for building sim-
ulators and emulators for both develop-
ment and testing. However, some of
these tools, being built by Army engi-
neers, would need to be certified before
use and certification required running on
hardware and software that was still under
development.

These parallel development efforts
would require a unique approach to devel-
opment and risk management. At the
macro or program level, we identified the
following risk drivers.
1. Schedule: The schedule would be

constrained and success-oriented, and
the highest priority was placed on
meeting schedule to allow for early
fielding of the system. Time- and
labor-intensive tasks such as docu-
mentation might have to be deferred
until late in the schedule. In addition,
many tasks that would normally be
done sequentially would have to be
done in parallel.

2. Funding: Limited funding was avail-
able for the software portion of the
program. AdaRose would plan to
make maximum use of available fund-
ing by multiple tasking of full-time
engineers and by utilizing part-time

“... the fundamentals of
effective risk

management at the
system level remain the
same. By identifying risks
and developing solutions

before and during
the development process,

you maximize the
team’s eff iciency and the

quality of the
finished product.”



February 2005 www.stsc.hill.af.mil 19

Software Risk Management From a System Perspective

labor for engineering support ele-
ments such as configuration manage-
ment (CM), quality assurance (QA),
lab technicians, and network main-
tainers.

3. Technical: A number of engineering
challenges were evident. The situation-
al awareness (SA) computer had to be
integrated to ensure that any SA failure
would not impact the primary mission
computer. Also, two third-party prod-
ucts – a radar measuring unit and a tac-
tical communication module – needed
to be integrated. AdaRose engineers
had past familiarity with the tactical
software, as well as prior experience
with integrating situational awareness
functionality and third-party products.
Therefore, technical risk, although evi-
dent, was placed third in priority, as it
did not appear to be a showstopper for
the program.

Risk Scenarios
At the start of the program, we devel-
oped a number of risk scenarios to deter-
mine those events or trigger points we
would have to watch, to warn us if and
when the risk became imminent. Even
though technical was not a serious risk
driver, our No. 1 risk scenario involved
the potential that the hardware, still in the
design and development stage, would be
substantially different from the specifica-
tions we were working from. If so, it
could entail software rework and impact
cost and schedule.

Our No. 1 concern was the communi-
cation interface between the tactical appli-
cation and the inertial measurement/nav-
igational unit. In the legacy system, this
had been a straightforward Direct
Memory Access (DMA) interface. Any
change here was very risky because this
unit was at the heart of the system and
failure here meant the system could be
dead in the water. The trigger point we
watched for in this risk scenario was any
change to that interface – and sure
enough it occurred as the project evolved.

Due to hardware limitations on the
tactical single-board computer, DMA
could not be supported and the commu-
nication between the tactical application
and the navigational unit had to be
changed from DMA to an interrupt-dri-
ven serial connection. This, in turn, drove
additional requirements to develop four
new drivers to replace a single generic dri-
ver contained in the old architecture. This
risk was mitigated somewhat by the fact
that AdaRose engineers had prior formal
training in developing software drivers for
this operating system.

Controlling the Risks 
As a baseline to accommodate top-level
program visibility, AdaRose normally uses
the typical Stair Step development process
consisting of (1) requirements analysis
(RA), (2) design, (3) code and unit test
(CUT), (4) system level integration and
test (SIT), and (5) formal qualification test
(FQT). Then, depending on the type of
software to be developed (e.g., new devel-
opment, re-host, block update, prototype,
etc.) and the constraints placed on the
program (e.g., cost, schedule, technical),
this baseline is modified/augmented for
best program performance.

For this program, we decided to mod-
ify the baseline process with a spiral devel-
opment approach to obtain maximum
productivity from our developers and to
mitigate major risk areas. At any point in
time, programmers would be coding and
unit testing in some areas while require-

ments analysis or design would be pro-
ceeding in others. We could also move out
in those areas where the software was not
yet dependent on hardware availability.
For example, we decided, early on, to
develop, application-specific, software
simulators and communication protocol
simulators to test the software – especial-
ly in those technical areas where rapid
prototyping for proof-of-concept or early
risk mitigation was warranted. The
threads we used, throughout the develop-
ment effort, to maintain coherency
became known as feature sets. We found
these to be invaluable risk mitigators.

Feature Sets 
A feature set is a block of executable
software that contains predefined fea-
tures/ requirements that make up a sub-
set of the entire program/application. A
feature set can consist of nothing more

than a rapid prototype to determine
proof-of-concept, or a fully integrated
and tested baseline. The purpose of fea-
ture sets is (1) to put before the user peri-
odic drops of executable code to gain
early concurrence and feedback of the
included features/requirements; (2) to
conduct early-on testing to reduce pro-
gram risk and provide relatively bug-free
software prior to entering FQT; and (3)
to keep the development effort moving
by allowing developers to move forward
on those sets of features that are not
dependent on other events, such as deliv-
ery of target hardware, special tools, or
third-party products.

Ideally, as the program progresses and
the software matures, periodic drops of
feature sets would consist of the most
current feature set along with all previous
sets until such time that the final set is
incorporated and the application is ready
to enter FQT. Most of the early feature
sets were tested using the developed soft-
ware simulators.

The other system level risk mitigators
that we used and that were described in
my earlier articles on risk management [1,
2] are in the following sections.

Integrated Product Teams 
Forming IPTs is another valuable
approach to containing costs and reduc-
ing risks, especially those that might effect
scheduling. The IPT facilitates problem
solving, enables the team to rapidly
respond to changing requirements, and
prompts everyone to work on schedule.

Prototyping 
Exploratory prototyping is an excellent
risk mitigator if project requirements are
ill-defined or likely to change before pro-
ject completion. In addition, exploratory
prototyping is an excellent way to clarify
requirements, identify desirable features
of the target system, and promote the dis-
cussion of alternative solutions.

Prototyping should answer two ques-
tions that are fundamental to software
development and risk management: “Is
the concept sound?” and “Is it worth pro-
ceeding further?” If the answer is not a
clear yes, you may be setting yourself up
for failure. More importantly, without this
insight, you will give the customer a false
sense of what can be accomplished. It is
better to know this up front. Sometimes
the most important risk management
action you will take is to ask these funda-
mental questions.

As an example, on this project we
needed to determine whether or not a
viable software solution could be found

“For this program,
we decided to modify

the baseline process with
a spiral development
approach to obtain

maximum productivity
from our developers and

to mitigate major
risk areas.”



Risk Management

20 CROSSTALK The Journal of Defense Software Engineering February 2005

to replace the aging analog tachometers
that controlled the rate of movement of
the weapon system. We discovered that
rate data was obtainable from the inertial
measurement/navigational unit. We then
proceeded to develop the prototype algo-
rithms that substituted this rate data for
the data from the tachometers. The next
step was to prove the concept. This required
just enough recoding to make it work on
the existing system hardware. This was
successful and as a result we were able to
mitigate this risk early in the program.

If the answers and the risks are satis-
factory in the exploratory prototyping
phase, you can move on to evolutionary

prototyping, which offers several benefits.
It enables your team to quickly and effi-
ciently build on proven aspects of the
software. As a result, the core of the soft-
ware’s foundation is tested and proven
early in the project, significantly reducing
exposure to unknowns. It is an important
contributor to feature sets.

Process Improvement 
Improving processes should be ongoing
throughout the project. For example, this
project required a dual display mode on
the operator’s console. Rather than hold
up development, while waiting on hard-
ware to arrive, we did the necessary design

and coding and used a dual monitor graph-
ics card to test out and prove the design.

It is important to continually ask, “Is
there a better way to get the job done?”
Improving the way you do things cannot
be done in a vacuum – communication at
all levels is critical. Participate with your
customers in IPTs and system manage-
ment teams. In addition, be sure to meet
with the teams’ engineers on a regular
basis for focused, but informal, discus-
sions. While these meetings are exception-
ally valuable, guard against extended meet-
ings that cut into your teams’ work time.

One alternative to lengthy meetings is
to develop and distribute weekly status
reports. These give each member insight
into the progress of the entire project and
a clear view of the big picture. Remember
that you can have the best processes in
place and still fail miserably in software
development. A motivated, goal-oriented,
and knowledgeable workforce will suc-
ceed even when the process is lacking. An
example of one metric we used on a
weekly basis is displayed in Figure 1.

Percent Complete
This metric provided top-level insight to
the stage of development across blocks of
functional requirements. We have shown
here only four of the 13 major functional
areas. Note that work in the communica-
tion interface area had not yet entered the
code-and-unit test phase due to unavail-
ability of hardware being developed by a
third party. However, Windows migration
was well ahead of the curve because it
was not hardware dependent.

Also included in the weekly reports
were more detailed descriptions of the
major risk areas, for example see Figure 2.

Risk rankings were continuously re-
evaluated and reprioritized throughout
the program. As higher priority risks were
worked off, others would move up to take
their place. Risk mitigation became a
dynamic real-time process.

Third Parties:
A Mixed Blessing 
If a product does fail, it is common for
many developers to blame the project’s
failure on third parties. In some cases they
are correct. At times you will have no
choice but to elicit their help. The key is
to minimize how much you depend on
them.

Any time you rely on a product or ser-
vice from someone outside of your group
your risk of failure or delay increases. Your
team may do everything right, but if a cru-
cial third party does not, your work may be

Figure 1: Example of a Weekly Metric

Figure 2: Example of Detailed Descriptions of a Major Risk Area

 



Software Risk Management From a System Perspective

February 2005 www.stsc.hill.af.mil 21

in vain. To illustrate this, consider the risks
you assume by depending on three crucial
components of your project from start to
finish. Assume each product has an 80 per-
cent chance of arriving on time and fully
functional. The probability of success for
all three combined is not 80 percent, it is
0.80 x 0.80 x 0.80 or 51 percent. In other
words, your project now has only a 50-50
chance of success. Do not assume that
third parties will have the same priorities
that you have. Use daily communication
with them to keep them in the loop and
make them a part of your team.

System-Level Cohesion
Needless to say, software cannot be devel-
oped in a vacuum. In the ideal software
world, we would hope to have qualified
hardware, emulators/simulators, and all
design and interface documents delivered
at project start. But that is not realistic,
especially with military tactical systems.
We find that software and hardware are an
integral, non-separable entity. Quite often
participants in system development efforts
will finger point and blame the other guy for
lack of progress.

On this project, we all realized the
many challenges and knew that a success-
ful outcome depended on a strong team
effort. As a result, we witnessed almost
daily instances of engineers supporting
each other – often putting aside their own
work to help move forward a higher pri-
ority effort. We saw a close working rela-
tionship develop between our software
developers and the hardware developer.
AdaRose engineers quite often diagnosed
hardware anomalies and provided work-
able solutions. At the IPT level, all were
well aware of the risks and a helping hand
rather than a pushing hand was the norm.

Results
As of this writing, the project is midway
through formal qualification test. The
schedule is still paramount but software
development was able to proceed in
advance of hardware availability by iden-
tifying and mitigating those critical risk
areas that could be worked off early. We
did this, up front, through rapid prototyp-
ing and by providing feature sets to show
proof-of-concept and provide executable
code to qualify the hardware and help cer-
tify the simulation/emulation tools. This
required a tailoring of our process and
maintaining a viable and dynamic risk
management program at the system level.

Summary 
Software development will always include
risks, but none are insurmountable if you

are prepared to face them at the start.
Risk management is an excellent way to
prepare for daily challenges. Risk manage-
ment must not only be implemented but
continually reassessed throughout the life
of the project. Do not blindly follow any
particular process but do tailor your
process to the job at hand.

A viable risk management plan can
mean the difference between success and
failure. It should, above all else, be flexi-
ble and encourage initiative. Remember to
always look ahead, use rapid prototyping
if necessary, develop simulators if neces-
sary, follow a defined program to mini-
mize and manage risks, use a good set of
metrics, keep the customer in the loop,
and always follow the fundamentals of
sound application development. Follow-
ing this risk management approach will
not guarantee excellent software develop-
ment, but over time it will certainly con-
tribute to your success.u

References
1. Holt, George. “Risk Management

Fundamentals in Software Develop-
ment.” CrossTalk, Aug. 2000: 12-
14 <www.stsc.hill.af.mil/crosstalk/
2000/08/holt.html>.

2. Holt, George. “Software Risk
Management – The Practical Ap-
proach.” Software Tech News 2.2
<www.sof tware technews. com/
technews 2-2/practical.html>.

About the Author

George Holt is presi-
dent and chief executive
officer of AdaRose Inc.
He has a wealth of pro-
gram management expe-
rience primarily with mil-

itary tactical systems. AdaRose recently
re-hosted 230,000 lines of Army tactical
software, written in Ada, to a digital con-
trol unit containing three single-board
computers, providing navigation, artil-
lery fire control, situational awareness,
and a prognostic/diagnostic capability.
Holt is the author of many technical
publications and co-author of “Strategy:
A Reader.”

AdaRose Inc.
430 Marrett RD
Lexington, MA 02421
Phone: (802) 728-9448
Fax: (781) 274-7359
E-mail: holt.adarose@verizon.net

March 5-12
IEEE Aerospace Conference

Big Sky, MT
www.aeroconf.org

March 7-10
SEPG 2005

Seattle, WA
www.sei.cmu.edu/sepg

March 15-16
Dayton Information Security

Conference ’05 
Dayton, OH

www.gdita.org/inc/event
detail.asp?eventID=340

April 4-6
DTIC Annual Users Meeting and

Training Conference
Alexandria, VA

www.dtic.mil/dtic/
annualconf

April 5-7
Federal Office Systems

Exposition (FOSE) 2005
Washington, DC
www.fose.com

April 18-21
2005 Systems and Software 

Technology Conference 

Salt Lake City, UT
www.stc-online.org

May 2-6
Practical Software Quality and

Testing (PSQT) 2005
Las Vegas, NV

www.qualityconferences.com

May 8-12
Nano Science and Technology Institute

2005 Conference
Anaheim, CA

www.nanotech2005.com/

COMING EVENTS


